Inferring the Joint Demographic History of Multiple Populations: Beyond the Diffusion Approximation.

نویسندگان

  • Julien Jouganous
  • Will Long
  • Aaron P Ragsdale
  • Simon Gravel
چکیده

Understanding variation in allele frequencies across populations is a central goal of population genetics. Classical models for the distribution of allele frequencies, using forward simulation, coalescent theory, or the diffusion approximation, have been applied extensively for demographic inference, medical study design, and evolutionary studies. Here we propose a tractable model of ordinary differential equations for the evolution of allele frequencies that is closely related to the diffusion approximation but avoids many of its limitations and approximations. We show that the approach is typically faster, more numerically stable, and more easily generalizable than the state-of-the-art software implementation of the diffusion approximation. We present a number of applications to human sequence data, including demographic inference with a five-population joint frequency spectrum and a discussion of the robustness of the out-of-Africa model inference to the choice of modern population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data

Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus,...

متن کامل

Inferring population histories using genome-wide allele frequency data.

The recent development of high-throughput genotyping technologies has revolutionized the collection of data in a wide range of both model and nonmodel species. These data generally contain huge amounts of information about the demographic history of populations. In this study, we introduce a new method to estimate divergence times on a diffusion time scale from large single-nucleotide polymorph...

متن کامل

Mitochondrial DNA variation, genetic structure and demographic history of Iranian populations

In order to survey the evolutionary history and impact of historical events on the genetic structure of Iranian people, the HV2 region of 141 mtDNA sequences related to six Iranian populations were analyzed. Slight and non-significant FST distances among the Central-western Persian speaking populations of Iran testify to the common origin of these populations from one proto-population. Mismatch...

متن کامل

Joint inference of population assignment and demographic history.

A new approach to assigning individuals to populations using genetic data is described. Most existing methods work by maximizing Hardy-Weinberg and linkage equilibrium within populations, neither of which will apply for many demographic histories. By including a demographic model, within a likelihood framework based on coalescent theory, we can jointly study demographic history and population a...

متن کامل

Inferring sex-specific demographic history from SNP data

The relative female and male contributions to demography are of great importance to better understand the history and dynamics of populations. While earlier studies relied on uniparental markers to investigate sex-specific questions, the increasing amount of sequence data now enables us to take advantage of tens to hundreds of thousands of independent loci from autosomes and the X chromosome. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 206 3  شماره 

صفحات  -

تاریخ انتشار 2017